The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity.
نویسندگان
چکیده
Progenitor cells in the mouse olfactory epithelium generate over a thousand subpopulations of neurons, each expressing a unique odorant receptor (OR) gene. This event is under the control of spatial cues, since neurons in different epithelial regions are restricted to express region-specific subsets of OR genes. We show that progenitors and neurons express the LIM-homeobox gene Lhx2 and that neurons in Lhx2-null mutant embryos do not diversify into subpopulations expressing different OR genes and other region-restricted genes such as Nqo1 and Ncam2. Lhx2-/- embryos have, however, a normal distribution of Mash1-positive and neurogenin 1-positive neuronal progenitors that leave the cell cycle, acquire pan-neuronal traits and form axon bundles. Increased cell death in combination with increased expression of the early differentiation marker Neurod1, as well as reduced expression of late differentiation markers (Galphaolf and Omp), suggests that neuronal differentiation in the absence of Lhx2 is primarily inhibited at, or immediate prior to, onset of OR expression. Aberrant regional expression of early and late differentiation markers, taken together with unaltered region-restricted expression of the Msx1 homeobox gene in the progenitor cell layer of Lhx2-/- embryos, shows that Lhx2 function is not required for all aspects of regional specification of progenitors and neurons. Thus, these results indicate that a cell-autonomous function of Lhx2 is required for differentiation of progenitors into a heterogeneous population of individually and regionally specified mature olfactory sensory neurons.
منابع مشابه
The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons.
In mice, approximately 1,000 odorant receptor (OR) genes are expressed in olfactory sensory neurons (OSNs). Homeodomain sites can be recognized in the promoter and upstream regions of several OR genes. Here, using the yeast one-hybrid system and electrophoretic mobility shift assay, we report that Lhx2, a LIM-homeodomain protein, binds to the homeodomain site in the mouse M71 OR promoter region...
متن کاملThe lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans.
Chemosensory neuron diversity in C. elegans arises from the action of transcription factors that specify different aspects of sensory neuron fate. In the AWB and AWA olfactory neurons, the LIM homeobox gene lim-4 and the nuclear hormone receptor gene odr-7 are required to confer AWB and AWA-specific characteristics respectively, and to repress an AWC olfactory neuron-like default fate. Here, we...
متن کاملAlternative olfactory neuron fates are specified by the LIM homeobox gene lim-4.
The Caenorhabditis elegans AWA, AWB, and AWC olfactory neurons are each required for the recognition of a specific subset of volatile odorants. lim-4 mutants express an AWC reporter gene inappropriately in the AWB olfactory neurons and fail to express an AWB reporter gene. The AWB cells are morphologically transformed toward an AWC fate in lim-4 mutants, adopting cilia and axon morphologies cha...
متن کاملDual role for LIM-homeodomain gene Lhx2 in the formation of the lateral olfactory tract.
The development of the olfactory system in vertebrates is a multistep process, in which several regulatory molecules are required at different stages. The development of the olfactory sensory epithelium and its projection to the olfactory bulb are both known to require the LIM-homeodomain transcription factor Lhx2. We examined whether Lhx2 plays a role in the development of the OB itself, as we...
متن کاملA Molecular Program for Contralateral Trajectory: Rig-1 Control by LIM Homeodomain Transcription Factors
Despite increasing evidence for transcriptional control of neural connectivity, how transcription factors regulate discrete steps in axon guidance remains obscure. Projection neurons in the dorsal spinal cord relay sensory signals to higher brain centers. Some projection neurons send their axons ipsilaterally, whereas others, commissural neurons, send axons contralaterally. We show that two clo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 21 شماره
صفحات -
تاریخ انتشار 2004